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Stream temperature and flow predictions
help answer key questions

Is the water cold
enough?

Is the water warm
enough?

Will the river

Will we have
flood?

enough to drink?
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Stream temperature and flow predictions
inform key decisions

How much water should we release
today to meet stakeholders’ short-
term and long-term needs?

Centers Scenario

What long-term policies can
we focus on now given
anticipated climate and land
use change?
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Process-guided Deep Learning

Machine Learning

CAT, DOG, DUCK

Process understanding
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How do we incorporate process- Process-Guided Deep Learaing
understanding? o
1. Time aware modeling ! ?
* (yesterday affects today) +
Process-based

2. Energy budget constraint

* (penalty for physically impossible
predictions)

3. Pretraining with a process-based
model Deep Learning

* (physically consistent starting point)

4. Space aware modeling (for streams)
* (upstream affects downstream)

More accurate

Less accurate
47

- \
Less data More data

Adapted from Read et al. 2019
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How do we incorporate process-understanding?
1. Time aware modeling
2. Energy budget constraint
3. Pretraining with a process-based model
4. Space aware modeling (for streams)
5.

Multi-task modeling of related variables
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multi-task deep learning

Primary objective: learn to read (unseen books) |j§
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multi-task deep learning

Primary objective: learn to read (unseen books) |H

Single-task Multi-task
VS
e Read the |= * Readthe |=
words words

e Describe the =
A\

picture
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multi-task deep learning

Primary objective: predict streamflow (in unseen conditions) 6
Multi-task

Predict 6
streamflow

Predict ‘
temperature
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Why Streamflow and Stream temperature

Both part of the energy transfer process

Incoming water flowing from surface runoff or groundwater brings energy
into a stream segment. This affects changes in streamflow and stream
temperature.
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Intuition: If a model learns from two aspects of the energy
transfer process (streamflow and water temperature),

then, it should learn to model the universal process better

and will therefore be able to make better predictions with
unseen input
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Forward pass g In'b\ut "

(produce predictions)

Today

Yesterday
—
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Forward pass N ) .:.

(produce predictions)

Today
Multi-task DL model

Shared hidden layer
Yesterday (6)

*_I_*

Flow output layer Temp output layer

(¢flow) (¢temp)

Flow Temperature
predictions predictions
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Backpropagation
(adjust parameters)

Multi-task DL Model

Shared hidden layer Q
©) o

scaled (with A)

Flow output layer Error and Temp output layer

(¢tefmp) combined (qbtimp)
Prediction Error Prediction Error
Flow Flow Temperature Temperature
Observations predictions predictions Observations
-
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scaled (with A)



Gradient descent: updating the shared hidden
layer parameters (0)

Q(i + 1) = H(i) o alv9£f10W (9 (i)» ¢flow(i)) + Alvel:temp (0 (i), themp(ij)

Gradient from Gradient from
errors in flow errors in temp
predictions predictions
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Gradient descent: updating the shared hidden
layer parameters (0)

H(i + 1) o H(i) - alveﬁflow (9 (i)» ¢flow(i)) 1 /1| 7191:1:37’1119 (0 (i); themp(ij)

Gradient from Multi-task Gradient from

error=hin . errors in temp
scaling factor | S cdiciions
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Experiments

103 sites across the US

Part of CAMELS dataset
(preprocessed
flow/weather/attribute
data)

aUSGS
science for a changing world
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Results: Effect of multi-task scaling factor
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Results: Effect of multi-task scaling factor
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Results: Multi-task is overall more accurate

0.66 -

0.64 -

median nse
o
o
N
1

0.60

0.58 A

BN single-task
BN multi-task (scaling factor 80.0)
B multi-task* (best site-specfic scaling factor)
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Results: Seasonality

multi-task scaling factor (A)
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Results: Seasonality
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Stream temperature and flow predictions
inform key decisions

e ~28k - either streamflow or
water temperature

* 19% - flow and temp*
e 78% - only flow

*Measuring temperature continuously costs less than 1/6 of
measuring discharge

If properly configured, multi-task models could be an effective
way to leverage these data to improve streamflow predictions
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Better Together?

Multi-task process-guided deep learning for predlctlng
streamflow and stream temperature

Thanks to USGS Tallgrass for prowdlng compute resources for the
experiments and the Pangeo team for compute resources |n prototyplng
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